Breaking News:
  • Registrati

Scienzaonline

Home

Rischi per l'ambiente dall'uso eccessivo di antibiotici nella zootecnia

E-mail Stampa

 

Con l'aumento della produzione zootecnica, per soddisfare le esigenze di una popolazione mondiale in crescita, è cresciuta a dismisura anche la somministrazione di antibiotici a bovini, suini e polli negli allevamenti di tipo intensivo. Si tratta di una pratica ancora vietata in Europa, ma praticata senza divieti in Cina e Stati Uniti. L’impiego è normalmente previsto per contenere infezioni e altre malattie fra capi che vivono fra di loro a stretto contatto, ma la FDA denuncia anche un uso superfluo per accelerare la crescita della muscolatura, in particolare nei bovini. Una stima parla addirittura dell'80 % di produzione di antibiotici negli Stati Uniti destinata all'allevamento.  Questa tendenza sta facendo in modo che aumenti la resistenza dei batteri agli antibiotici all'interno del suolo, comportando rischi sulla reale efficacia di questi farmaci. Il loro impiego massiccio infatti svolge un 'azione sul suolo, ed in particolare sui microrganismi, che non va sottovalutata.

 

Un hub per la scienza del patrimonio culturale

E-mail Stampa

Prende il via la fase preparatoria dell’infrastruttura di ricerca europea per la scienza applicata al patrimonio culturale: E-RIHS PP - European Research Infrastructure for Heritage Science Preparatory Phase. Firenze candidata a ospitare la sede centrale europea. Il progetto è finanziato dall’Ue e guidato dal Cnr, con il patrocinio del Comune di Firenze e della Regione Toscana e con il supporto della Fondazione Cassa di Risparmio di Firenze

 

Si è tenuto oggi a Firenze, presso la Sala Capitolare della Caserma Redi (ex Convento del Maglio), il workshop internazionale ‘Towards a European Research Infrastructure for Heritage Science’, evento di avvio della fase preparatoria ‘E-RIHS PP - European Research Infrastructure for Heritage Science Preparatory Phase’, l’infrastruttura di ricerca europea per la scienza del patrimonio, unico dei sei nuovi progetti entrati nella Roadmap ESFRI (European Strategy Forum on Research Infrastructure) nel 2016 a guida italiana. Per questo avvio la Commissione Europea ha approvato un finanziamento di 4 milioni di euro sul programma di ricerca e sviluppo Horizon 2020. Il progetto è finanziato dall’Ue e sostenuto da Miur, Mibact, Mise, patrocinato da Comune di Firenze e Regione Toscana, con il supporto della Fondazione Cassa di Risparmio di Firenze che si è impegnata a mettere a disposizione l’immobile (cioè la Caserma Redi) nel caso Firenze diventi la sede permanente.

 

Bacteria and phages - endless cycles of evolution

E-mail Stampa

PaulineScanlanCN2_3851c


What drives bacterial strain diversity in the gut? Although there are a number of possible explanations, a recent opinion piece published in TRENDs in Microbiology by Dr Pauline Scanlan, a Royal Society – Science Foundation Ireland Research Fellow at the APC Microbiome Institute, University College Cork, addresses one potentially important and overlooked aspect of this unresolved question. The human gut is host to an incredible diversity of microbes collectively known as the gut microbiome. Our gut microbiomes interact with us, their human hosts, to perform a myriad of crucial functions ranging from digestion of food to protection against pathogens. Whilst superficially it may seem that the microbes inhabiting the human gut are stable and broadly similar between individuals, recent advances in sequencing technology that allow for high-level resolution investigations have shown that our gut microbiomes are dynamic, capable of rapid evolution and unique to each individual in terms of bacterial species and strain diversity. This unique inter-individual variation is of crucial importance as we know that differences in bacterial strain diversity within species can have a range of positive or negative consequences for the human host – for example some strains of a given bacteria are harmless whilst another strain of the same bacterial species could kill you.  A classic example of this is different strains of the gut bacterium Escherichia coli - E. coli Nissle 1917 is used as a probiotic and E. coli O157:H7 has been responsible for a number of deadly food-borne pathogen outbreaks. Therefore a better understanding of what drives bacterial strain diversity is not just fundamental to our understanding of the ecology and evolution of microbes but is also highly relevant for improvements in human health and disease prevention.

 

Cortisol excess hits natural DNA process and mental health hard

E-mail Stampa

 

High concentrations of the stress hormone, Cortisol, in the body affect important DNA processes and increase the risk of long-term psychological consequences. These relationships are evident in a study from the Sahlgrenska Academy on patients with Cushing’s Syndrome, but the findings also open the door for new treatment strategies for other stress-related conditions such as anxiety, depression and post-traumatic stress. “If these results can be verified and repeated in other studies, they would have significance for future possibilities for treating stress-induced psychological consequences,” says Camilla Glad, postdoctoral researcher at the Department of Internal Medicine and Clinical Nutrition.

 

Novel drug delivery beats swine flu at gene level

E-mail Stampa

The schematic illustration of the intracellular delivery of antiviral siRNA against influenza A virus using SiO2-coated hybrid capsules.

Scientists from Tomsk Polytechnic University together with their colleagues from St. Petersburg and London have elaborated a new approach to deliver anti-viral RNAi to target cells against H1N1 influenza virus infection. Drug encapsulating via a combination of layer-by-layer technique and sol-gel chemistry allows beating swine flu at the gene level. The first test showed an 80% drop in virus protein synthesis. A research was conducted by scientists from the Novel Dosage Laboratory, RASA Center at TPU, Pavlov First Saint Petersburg State Medical University, Research Institute of Influenza of Ministry of Healthcare of the Russian Federation and Queen Mary University of London School of Engineering and Materials Science. Scientists from Gorbacheva Research Institute of Pediatric Hematology and Transplantation also took an active part in the research.

 

About time! Predicting midge seasonality key to reducing livestock diseases

E-mail Stampa

Obsoletus_group_specimen_Hopetoun_midges_LARGER_file

 

Ecologists at the UK-based Centre for Ecology & Hydrology (CEH) have led a study which informs optimal strategies for control of devastating midge-borne diseases like bluetongue and Schmallenberg virus that affect cattle and sheep in the UK and beyond. Adult female midges (males do not bite) are responsible for infecting farm animals with numerous diseases and are active and abundant between Spring and Autumn. This activity period varies across the UK and Europe, and the severity of disease is linked to how many midges occur at peak season. Essential movements of animals between premises and vaccination campaigns can only occur in the European Union within the Seasonal Free Vector Period over winter, when adult midges are absent or less active and don’t bite animals and pass on infection.

 

Graphene-Based Neural Probes Probe Brain Activity in High Resolution

E-mail Stampa

Graphene-based transistors enable a flexible neural probe with excellent signal-to-noise ratio. Such probes are useful for examining neural activity for understanding diseases, as well as in neuroprosthetics for control of artificial limbs. Measuring brain activity with precision is essential to developing further understanding of diseases such as epilepsy and disorders that affect brain function and motor control. Neural probes with high spatial resolution are needed for both recording and stimulating specific functional areas of the brain. Now, researchers from the Graphene Flagship have developed a new device for recording brain activity in high resolution while maintaining excellent signal to noise ratio (SNR). Based on graphene field-effect transistors, the flexible devices open up new possibilities for the development of functional implants and interfaces.

 

Scientists Discover New Class of Anti-Diabetes Compounds that Reduce Liver Glucose Production

E-mail Stampa

TSRI Professor Pat Griffin, co-chair of the TSRI Department of Molecular Medicine. (Photo by James McEntee.)

 

Scientists may have found a new tool for studying—and maybe even treating—Type 2 diabetes, the form of diabetes considered responsible for close to 95 percent of cases in the United States. A team of scientists from the Florida campus of The Scripps Research Institute (TSRI), Dana-Farber Cancer Institute, Harvard Medical School and the Yale University School of Medicine, among others, have identified a new class of compounds that reduce production of glucose in the liver. One of these compounds, designed and optimized by TSRI scientists, significantly improves the health of diabetic animal models by reducing glucose levels in the blood, increasing insulin sensitivity and improving glucose balance.

 

More than a Hundred Years of Flooding and Erosion in One Event

E-mail Stampa

Figure 1D and 1E from Rathburn et al.: Flood impacts in the North St. Vrain Creek catchment, northern Colorado, USA. Images D and E are from Google Earth.


Sara Rathburn of Colorado State University and colleagues have developed an integrated sediment, wood, and organic carbon budget for North St. Vrain Creek in the semi-arid Colorado Front Range following an extreme flooding event in September of 2013. Erosion of more than 500,000 cubic meters, or up to ~115-years-worth of weathering products, occurred through landsliding and channel erosion during this event. More than half of the eroded sediment was deposited at the inlet and delta of a water supply reservoir, resulting in the equivalent of 100 years of reservoir sedimentation and 2% loss in water storage capacity. The flood discharged 28 mega-grams of carbon from one square kilometer of land (28 Mg C/km2), which is more like what would happen in humid, tectonically active areas. To get an idea of what that means, Rathburn explains, a mega-gram of carbon (C) eroded from one square kilometer of land is equivalent to about a million paper clips covering an 18-hole golf course. So in this scenario, the flood discharged 28 million paper clips from just a golf course-sized area.

 

Astronomers probe swirling particles in halo of starburst galaxy

E-mail Stampa

NGC253 starburst galaxy in optical (green; SINGG Survey) and radio (red; GLEAM) wavelengths. The H-alpha line emission, which indicates regions of active star formation, is highlighted in blue (SINGG Survey; Meurer+2006).

Astronomers have used a radio telescope in outback Western Australia to see the halo of a nearby starburst galaxy in unprecedented detail. A starburst galaxy is a galaxy experiencing a period of intense star formation and this one, known as NGC 253 or the Sculptor Galaxy, is approximately 11.5 million light-years from Earth. “The Sculptor Galaxy is currently forming stars at a rate of five solar masses each year, which is a many times faster than our own Milky Way,” said lead researcher Dr Anna Kapinska, from The University of Western Australia and the International Centre for Radio Astronomy Research (ICRAR) in Perth. “This galaxy is famous because it’s beautiful and very close to us, and because of what’s happening inside it—it’s quite extraordinary.”

 

Northern oceans pumped CO2 into the atmosphere

E-mail Stampa

 

The illustration identifies the high-latitude North Atlantic as a significant CO2 sink (The purple areas are the most efficient sinks, while red ones are sources of CO2 in the modern ocean). The white star shows the location of the studied sediment core. The map was generated using data of Takahashi et al. Illustration: M. Ezat.


Norwegian Sea acted as CO2 source in the past. It pumped the greenhouse gas into the atmosphere instead of absorbing it, as it does today. At the same time the pH of the surface waters in these oceans decreased, making them more acidic. Both of these findings imply changes in ocean circulation and primary productivity as a result of natural climate changes of the time. The findings were recently published in Nature Communications.

 

Farming becoming riskier under climate change

E-mail Stampa

Climate change predicted to impact field workability

 

Climate change is predicted to impact agriculture, but a new study puts these changes in terms that are directly applicable to farmers. For Illinois, the corn planting window will be split in two to avoid wet conditions in April and May. Each planting window carries increased risk – the early planting window could be thwarted by frost or heavy precipitation, and the late window cut short by intense late-summer drought. Farmers and crop insurers must evaluate risk to avoid losing profits. Scientists the world over are working to predict how climate change will affect our planet. It is an extremely complex puzzle with many moving parts, but a few patterns have been consistent, including the prediction that farming as we know it will become more difficult. Scientists infer the impact on agriculture based on predictions of rainfall, drought intensity, and weather volatility. Until now, however, the average farmer may not have been able to put predictions like these into practice. A new University of Illinois study puts climate change predictions in terms that farmers are used to: field working days.

 

TECNOLOGIA

Energia: arriva "Sesto...

  L’ENEA ha brevettato “Sesto Senso”, un sistema multisensoriale in grado di monitorare e ottimizzare i consumi energetici di abitazioni e uffici assicurando temperatura e illuminazione ideali sia in estate che in inverno. Ma c’è di più. Grazie ad un sistema innovativo di rilevamento...

VISITA LA NOSTRA PAGINA FACEBOOK

LAVORI IN CORSO

LAVORI IN CORSO - Nuovo sistema di gestione in collaudo
VI PREGHIAMO DI SCUSARCI PER I DISAGI
STIAMO IMPORTANDO IL DATABASE DI
TUTTI GLI ARTICOLI DI SCIENZAONLINE
DAL 2003 AD OGGI

SCIENZAONLINE.COM

  • Ultime News
  • News + lette
Il Grafene, il nano-materiale che migliorerà la nostra vita

Il Grafene, il nano-materiale che...

2010-11-23 00:00:00

Musicolor

Musicolor

2009-02-18 00:00:00

I Della Robbia e la storia della terracotta invetriata

I Della Robbia e la storia della...

2009-03-18 00:00:00

Giovanni Papi - Prata Caelestia

Giovanni Papi - Prata Caelestia

2009-11-17 00:00:00

Statistiche

Tot. visite contenuti : 22641221

Autorizzazioni

 

Scienzaonline con sottotitolo Sciencenew 
Periodico
Autorizzazioni del Tribunale di Roma – diffusioni:
telematica quotidiana 229/2006 del 08/06/2006
mensile per mezzo stampa 293/2003 del 07/07/2003
Pubblicato a Roma – Via A. De Viti de Marco, 50 – Direttore Responsabile Guido Donati

 

Hot Topic

Ultimi Commenti

Chi è Online

 157 visitatori online

X

.

Pubblica il tuo Articolo

Hai scritto un Articolo scientifico? Inviaci il tuo articolo, verrà valutato e pubblicato se ritenuto valido! Fai conoscere la tua ricerca su Scienzaonline.com!

Ogni mese la nostra rivista è letta da + di 50'000 persone

Information

Information

Ultime News

Redazione

Contatta la Redazione di Scienzaonline.com per informazioni riguardanti la rivista
Pagina Contatti

Questo sito utilizza cookie per implementare la tua navigazione e inviarti pubblicità e servizi in linea con le tue preferenze. Chiudendo questo banner, scorrendo questa pagina o cliccando qualunque suo elemento acconsenti all'uso dei cookie. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information